Te(OH)₆. NaF, eine Struktur mit kurzen OH…F-Wasserstoffbrücken

VON RUDOLF ALLMANN

FB Geowissenschaften der Universität, Lahnberge, D355 Marburg, Deutschland (BRD)

(Eingegangen am 2. Juli 1975; angenommen am 25. Juli 1975)

Te(OH)₆. NaF crystallizes in the polar space group R3 with a=6.025 (3), c=13.486 (5) Å ($a_R=5.684$ Å, $\alpha_R=64.01^\circ$), Z=3, V=424.0 Å³, $D_x=3.19$ g cm⁻³. With 231 independent reflexions (of unit weight) and anisotropic temperature factors for Te the structure was refined to R=3.0 %. Al(OH)₃-like layers of [NaTe \Box (OH)₆]⁺ are connected by OH···O hydrogen bonds (O···O=2.76 Å). The other half of the OH groups are involved in short OH···F bonds (O···F=2.50 Å). The fourth neighbour of the F ion is Na⁺ (Na-F=2.43 Å) increasing the coordination number of Na to 7 (Na-O=3 × 2.33 and 3 × 2.65 Å), whereas the Te(OH)₆ octahedra are only slightly distorted (Te-O=6 × 1.92 Å). Infrared and Raman spectra are reported.

Einleitung

Tellursäure, Te(OH)₆, bildet mit Alkalifluoriden Addukte wie Te(OH)₆. NaF oder Te(OH)₆. 2KF (Kolditz & Fitz, 1967). Das gesamte Fluor lässt sich sofort mit Zirkonoxidchlorid titrieren, so dass in diesen Verbindungen keine Fluorotellursäuren Te $F_n(OH)_{6-n}$ vorliegen können, jedoch wurde von Kolditz & Fitz eine Erhöhung der Koordinationszahl des Tellurs vermutet, etwa zu Te(OH)₆F⁻. Nach Kolditz und Fitz zeigt das IR-Spektrum eine charakteristische Bande bei 888 cm⁻¹. Die δ -TeOH-Banden wurden den Linien bei 1120 und 1250 cm⁻¹, die γ -OH-Banden denen bei 3000–3270 cm⁻¹ zugeordnet.

Die vorliegende Strukturuntersuchung zeigt jedoch, dass keine Te-F-Bindungen vorhanden sind, sondern dass vielmehr die Te(OH)₆-Gruppen denen der freien Tellursäure gleichen und dass die F-Ionen nur als Acceptoren für starke OH····F-Wasserstoffbrücken dienen. Wenig oberhalb 100 °C geben diese Verbindungen Wasser ab und kondensieren nach Kolditz und Fitz zu polymeren Produkten der ungefähren Zusammensetzung NaTeO₃F bzw. K₂TeO₃F₂.

Strukturbestimmung

Ein farbloser, würfelförmiger Kristall (Rhomboeder mit $\alpha = 92,3^{\circ}$) von Te(OH)₆. NaF von ~0,25 mm Kantenlänge wurde auf einem Philips-Vierkreisdiffractometer PW 1100 vermessen (Mo K α -Strahlung, Graphit-Monochromator, $\omega/2\theta$ -scan). Für $l \ge 0$ wurden bis $\theta_{max} = 28^{\circ}$ 728 Reflexe gemessen. Nach der LP-Korrektur wurden die – meist 3 – symmetriegleichen Reflexe gemittelt (231 unabhängige Reflexe). Es erfolgte keine Absorptionskorrektur ($\mu = 54.5$ cm⁻¹).

Eine Differenz-Fouriersynthese in $R\overline{3}$ mit Te in 0,0,0 ergab die gemittelte Lage der OH-Ionen sowie zwei weitere Maxima von halber Höhe für Na und F auf der dreizähligen Achse in 0,0, $\pm z$. Eine der beiden möglichen NaF-Lagen wurde ausgewählt und die weitere Verfeinerung in der Raumgruppe R3 fortgeführt. Eine weitere Δ -Fouriersynthese mit allen Atomen ausser H ergab die Lage von H(1), nicht aber die von H(2), das sich ungefähr in der Mitte zwischen O(2) und F befinden muss. Mit anisotropen Temperaturfaktoren für Te und isotropen für die anderen Atome ergab sich ein endgültiger R-Wert von 3,0% (Gewicht w = 1 für

Tabelle 1. Atomparameter für Te(OH)₆. NaF

 $\bar{\sigma}(xyz)$ ist die gemittelte absolute Standardabweichung der variierten Koordinaten in 10⁻² Å. Die Lage von H(2) ist nicht bewiesen.

	x		у	z	$\bar{\sigma}(xyz)$	B(Å	²)
Те	0		0	0	_	[0,2	5 (2)]
Na	0		0	0,3755 (7)	0,9	1,4	(1)
F	0		0	0,5555 (9)	1,3	1,2	(2)
O(1)	0,2670 (31)	0,000	69 (24)	0,0791 (9)	1,5	1,8	(4)
O(2)	-0,2850(25)	-0,050	03 (19)	-0,0804 (8)	1,2	0,8	(3)
H(1)	0,31 (5)	0,14	(5)	0,15 (2)	29	6 (5)
H(2)	-0,30	0,11		-0,09	-		
	B11	B ₂₂	B ₃₃	B ₁₂	<i>B</i> ₁₃	B ₂₃	
Te	0,31 (4)	$=B_{11}$	0,12 (3)	$=\frac{1}{2}B_{11}$	Q	Q	Ų

alle Reflexe). Folgende Atomformfaktoren wurden verwendet: Te, Na, F und O nach Hanson, Herman, Lea & Skillman (1963) und H_{bond} nach Stewart, Davidson & Simpson (1965). Die endgültigen Atomparameter sind in Tabelle 1, die Strukturfaktoren in Tabelle 2 zusammengestellt.

Strukturbeschreibung

Die OH-Ionen bilden in erster Näherung dichtgepackte Doppelschichten von 2,15 Å Abstand. In einem Drittel

Tabelle 2. Beobachtete und berechnete Strukturfaktoren von Te(OH)₆. NaF

In den Spalten steht jeweils der laufende Index l, $|F_o|$ und $|F_c|$.

0.0.		- ; 3		- 73		• , 0 , 6		• •	- 54	- 55	1	62	59	•	121	120	- 10	57	52		1.2.4		- 1	80			125	126	1.5				•	- 14
3 1*:	:52	-10	- 95	- 90	- 14	74	26	0	71	71		75	- 6.5		87			104	104	- 11			- 2				×.							
5 50	46	- 7	129	125	-11		95			-	7	116	112					1 10	1	- 33		- 22	- 1						- 12		<u>.</u>			
9 97	12			38	- 4	67	66	- 6	22	32	10	36		÷		- 55				- 7									1		1000			
12 112	110																- 2						•	6.5	54				,			110	~	~
						1.1.1								•••	• >		- 1			-7	4.	40							•	- 76	81		49	- 49
	- 22								*****	•	12						•	170	115	•	×.,					9	~1	72			67			•1
10 43		- 2	10.3	10.4		139	:05		- 22					,	•••••		•	133	133	•	۰.		- 1 -	63	• 3	- 6	••	- '5	12	۶.	53	- 1	ec –	۰.
				w.,	•	**		· 12		- 50		••••			- 59	- 69	- 11	:04	101		- 8	15	- 11	2-	**	- 3	~	٠,				- 2	••	5.
1.01	•	- 11		••	,	58	56	-9	76	67	- 13	- 92	*1	- 5	89	88	:•	- 51	54	:2	54	44				с.		85					· •	
-17 50	34	1.	70	**	:0	~	78	-6	1+C	24.2	- 10	*1	••	- 2	78	78				- 11		46	- 5	1.5.1		÷.			1.11		20		8.4	
-1- 03	42	17	64	•5	- 23	44	88	- 3	183	145	- 7	64	60			50		2.2.							64		÷.	- 14		'n.	-			
-11 120	117								:79	135		70	65		61	61	- 15	- 53	·	-	× .		- 11			3	÷.		12	2				
-8 1CB	:03	2							72	65	- 1	:10	109	2	78	78	- 12	50	44		12.1						•••							
-5 120	124	- 15	60	50			20	- 4	110	127			100	10						· · ·				- 22	- 22				· · ·				21 -	
-2 16.0	16.9	- 12														••	- 22				~	٠,			~~					.,	63	• •		
1 129	110	- 3	20		- 14		23												- 22		85	\$2	- 45	- 69	÷1	- 9	S.	51		٠.	۰,		•	••
	im							- 21				- 25			· · · · ·	۰			- 24		61	**	.,	- 7.3	· *	- 1				·)	**		· ·	• 1
					1	- 23			•	•6	- 11		:00	•••	~~	• • •	0	119	120	- 2	61	51				1.1	- 4	۰.	1.0	51	36	÷.	3°.	11
			106	:05	- 2	- 95	12					- 14	78	• 1	56	57)	111	112	5	15	18				- 2	N 1	• •						
10 84		0	:00	:70	•	- 95	92							2	65	65	- 1	103	33		44	85	- 1.5	55	35			٠.						
13 100		,		:22		63	6٦	- 14	¥	-7	•	4,1,	£	,	63	6)			٠,	11	52	÷.	- 42	42			62.	65		121	1.2	- 5	191	10
16 75	s 0	6	- 79		: 1	6.	67	- 12	**	82	- : 2	63	- 65				:2	53	57				- 24		÷.,						**		1.6	41
			•0	78				- 8	\$2		- 9	70	6.				- 15		61						142						11	- 21		
2.0.1		12	75	7%		4.2.1		- 5	144	1.46	- 6	6.2		- 16		•••					-121		- 12	÷.,	- 22			·	12					
- 5 57	72	15	66						162	140	- 6	÷.,										••	- 11							~,		•	×.	
	-								***	***			•••			- 10							- 2	111	112	- 1	- 6 .	- 4	•	S.4				

der vorhandenen Oktaederlücken befinden sich die Te-Ionen, im zweiten Drittel die Na-Ionen, und das dritte Drittel bleibt leer. Damit gleichen die NaTe \square (OH)₆-Schichten ungefähr den Al₂ \square (OH)₆-Schichten des Hydrargillits (=Gibbsit). Allerdings sind die Na-Ionen aus der Mitte der Schichten in Richtung auf die F-Ionen um 0,57 Å herausgerückt. Dadurch erhöht sich die Koordinationszahl der Na-Ionen auf 7 (Fig. 1).

Die beiden OH-Dreiecke um Te sind nicht – wie in einem idealen Oktaeder – exakt um 60° gegeneinander verdreht, sondern um 52°. Ausserdem ist das Te(OH)₆-'Oktaeder' etwas in z-Richtung gestaucht. Dadurch verkürzt sich die gemeinsame Kante mit dem Na-Koordinationspolyeder auf 2,56 Å. Die beiden kristallographisch verschiedenen Te–O-Abstände sind im Rahmen der Fehler gleichlang (Mittel 1,918 Å) und entsprechen völlig denen der beiden Modifikationen von Te(OH)₆: monoklin: Te–O=1,916 Å (Röntgendaten; Lindqvist, 1970) bzw. 1,909 Å (Neutronendaten; Lindqvist & Lehmann, 1973), D_m = 3,07 g cm⁻³, bzw. kubisch: Te–O=1,93 Å, D_x =3,27 g cm⁻³ (Cohen-Addad, 1971). Im monoklinen Te(OH)₆ sind alle OH-Gruppen an OH···O-Wasserstoffbrücken von im Mittel 2,70 Å Länge beteiligt. Die eine Hälfte dient zur Bildung von

Tabelle 3. Bindungslängen L in Å (oberer Wert) und Bindungsvalenzen v (in v.u. unterer Wert) für Te(OH)6. NaF

Die mit *	gekennzeichneten	Abstände zählen	dreifach	für die	Atome in spezieller	Lage: T	'e, Na un	d F. $\sigma(L) = 0$),01–0,02 Å.
		Te	Na	H(1)) H(2)	$\sum v$			
	O(1)	1,91 Å*	2,33*	(1,19)	~				
		1,01 v. u.	0,19	0,82		2,02			
	O(2)	1,92*	2,65*	(1,58)	(1,02)				
		0,99	0,10	0,18	0,72	1,99			
	F	-	2,43	_	(1,48)*				
			0,14		0,28	0,98			
	$\sum v$	6,00	1,01	1,00	1,00	O(1)····O	0(2)	2,76	
						$O(2) \cdots F$	2	2.50	

Fig. 1. Projektion einer Schicht TeNa \Box (OH)₆ auf die x, y-Ebene. Das eingezeichnete Na-Ion liegt in $\frac{1}{3}z$ mit z=0,0422, Fdarüber in z=0,2222 (nicht eingezeichnet). Das andere Fluor-Ion befindet sich unter dem leeren Oktaederplatz in $\frac{2}{3}z$ mit z= -0,1111. Übrige z-Werte wie in Tabelle 1.

 $[Te(OH)_6]_{\infty}$ -Ketten, die andere Hälfte verknüpft diese Ketten miteinander. Im Te(OH)₆. NaF gibt es ebenfalls O(1)-H···O(2)-Wasserstoffbrücken von 2,76 Å Länge, durch die benachbarte NaTe(OH)₆-Schichten zusammengehalten werden. Als Acceptor für die O(2)H-Gruppen dienen die Fluorionen, wobei sehr kurze O(2)···F-Abstände von 2,50 Å Länge auftreten. Durch diese enge Packung ist der Volumenbedarf pro Formeleinheit beim Te(OH)₆. NaF (141,3 Å³) nur um 17 Å³ grösser als beim monoklinen Te(OH)₆, während im NaF selbst der Volumenbedarf pro Formeleinheit 24,8 Å³ beträgt.

Schätzt man die Bindungsvalenzen v für Te-O und Na-O (bzw. Na-F) aus den Bindungslängen L mit der Formel

$$L(v) = L(1) - k \log v$$

[mit L(1) = 1,915 bzw. 1,62 Å und k = 0,80 bzw. 1,01 Å] und die Bindungsvalenzen in den Wasserstoffbrücken aus den O···O bzw. O···F-Abständen nach Donnay & Allmann (1970) (siehe auch Allmann, 1975) ab, so ergibt sich folgendes Schema (Tabelle 3) für die Bindungsvalenzen und deren Summen (dabei werden die Abstände zu F wie um 0,05 Å vergrösserte Abstände zu O behandelt).

Ohne Berücksichtigung der Wasserstoffbrücken betragen die Valenzsummen für O(1)H und O(2)H 1.20 bzw. 1.09 v.u. (statt des Idealwertes 1,00 v.u. für OH-Gruppen), während der Ladungsausgleich für das Fluorion mit 0.14 v.u. viel zu niedrig ist. Durch das postulierte System der Wasserstoffbrücken [die Lage von H(2) ist nicht bewiesen aber sehr wahrscheinlich] wird aber ein vollständiger Ladungsausgleich erreicht. Danach gibt das Fluorion seine Ladung hauptsächlich an drei O(2)H-Gruppen ab; die Na-F-Bindung ist schwächer als im NaF selbst (dort Na-F=a/2=2.32 Å und $v = \frac{1}{6}$). Insgesamt ist F tetraedrisch koordiniert mit und \angle Na-F-O(2) = 100° $\angle O(2) - F - O(2'') = 117^{\circ};$ ebenso O(2) mit Bindungswinkeln zwischen 100° für Te-O(2)-Na und 121° für Te-O(2)-O(1). Dagegen ist O(1) ungefähr planar von drei Atomen umgeben $[Te-O(1)-Na=112^{\circ}, Te-O(1)-O(2)=116^{\circ}, Na-O(1)-O(2)=116^{\circ}, Na-O(1)-O(2)=10^{\circ}, Na-O($ $O(2) = 128^\circ$, vergl. Fig. 1]. Der Winkel $O(1)-H(1)\cdots$ O(2) liegt ungefähr bei 170°, über den Winkel O(2)- $H(2) \cdots F$ lässt sich nichts aussagen (175° mit den angenommenen Koordinaten aus Tabelle 1).

Fig. 2. IR-Spektrum von Te(OH)₆ (oben, nach Siebert, 1959) und IR- und Ramaspektrum von Te(OH)₆. NaF (unten):
---: IR-Spektrum in Nujol, KBr-Fenster (unterhalb 500 cm⁻¹: CsJ-Fenster, N=Nujol-Banden); ---: IR-Spektrum in Polyfluoräthylen (etwas nach oben verschoben); ---: Raman-Spektrum (im Mittelteil traten keine Banden auf, genaue Wellenzahlen im Text). (Berichtigung: statt 225 lies 255.)

Infrarot- und Raman-Spektren

In Fig. 2 sind die IR- und Ramanspektren von $Te(OH)_6$. NaF angegeben und mit dem IR-Spektrum von $Te(OH)_6$ nach Siebert (1959) verglichen. Leider lässt sich dieser Literaturangabe nicht entnehmen, ob es sich um das Spektrum der kubischen oder der mono-klinen Modifikation des $Te(OH)_6$ handelt; nach einem Vergleich mit den verschiedenen $Te(OH)_6$ -Spektren nach Bayer (1968) hat Siebert aber die monokline Form untersucht.

In der Struktur des Te(OH)₆. NaF hat der Te(OH)₆-Komplex die Eigensymmetrie C_3 und in den Klassen *A* als auch *E* sind jeweils die folgenden Schwingungen zu erwarten: $2 \times v$ (Te-O), $3 \times \delta$ (Te-O), $2 \times v$ (OH), $2 \times \delta$ (TeOH) (in plane) und $2 \times \gamma$ (TeOH) (out of plane); ausserdem sollten wegen der starken Unterschiede in den Wasserstoffbrückenbindungen die O(1)H zuzuordnenden Schwingungen stark von den O(2)H zuzuordnenden abweichen [O(1)H···O(2)=2,76 Å, O(2)H ···F=2,50 Å].

Unter der Annahme, dass für die O(1)H- bzw. O(2)H-Schwingungen die Klassen A und E zusammenfallen und nicht unterschieden werden können, wird die folgende Zuordnung der IR-Banden getroffen: v[O(1)H] 3160 cm⁻¹, v[O(2)H] 2280, δ [TeO(2)H] 1240, δ [TeO(1)H] 1115, y[TeO(2)H] 885, y[TeO(1)H] 615, v(TeO) 672, 665, 655 (sh) und 637, δ (TeO) 405, 395 (sh), 348 und 335 (sh) cm⁻¹. Die beiden v(OH)-Schwingungen von 3160 und 2280 cm⁻¹ stimmen gut mit den Werten überein, die sich aus den gefundenen O···Obzw. O···F-Abständen abschätzen lassen (Allmann, 1971).

Die den Streckschwingungen der Wasserstoffbrükken zuzuordnenden Banden liegen bei 255 cm⁻¹ für ν [O(2)H···F] und 205 cm⁻¹ für ν [O(1)H···O(2)]. Letzterer Wert stimmt gut mit dem für Eis überein, in dem der O···O- Abstand ebenfalls 2,76 Å beträgt (Gross, 1959). Die schwache Bande bei 2380 cm⁻¹ ist möglicherweise der erste Oberton zu δ [TeO(2)H]=1240 cm⁻¹ und die schwachen Banden bei 2680 und 2930 cm⁻¹ können Kombinationsschwingungen von ν [O(2)H] mit δ (TeO) bzw. ν (TeO) sein.

Im Te(OH)₆.2KF fallen die relativ scharfen ν (TeO)-Banden (691, 673 und 664 cm⁻¹) nicht mit den breiteren γ (TeOH)-Banden zusammen (935, 890 und 815 cm⁻¹ bei OH····F~2,58 Å, Allmann & Haase, 1975). Diese unterschiedliche Bandenform wurde bei der obigen Zuordnung von γ [O(1)H] benutzt. Für das monokline Te(OH)₆ mit sechs OH···O Wasserstoffbrücken bei 2,70 Å sind die γ (TeOH)-Banden bei 700 cm⁻¹ zu erwarten, d.h. gerade im Bereich der ν (TeO)-Banden. Die breite Bandengruppe zwischen 600 und 800 cm⁻¹ spricht für die Überlagerung dieser beiden Schwingungsarten, zumal das Ramanspektrum von Te(OH)₆ viel schärfer ist [ν (TeO) 650 und 630 cm⁻¹, δ (TeO) bei 375 cm⁻¹, Siebert, 1959] als das IR-Spektrum.

Im Ramanspektrum von Te(OH)₆. NaF ist von den OH-Banden nur v[O(1)H] bei 3150 cm⁻¹ angedeutet. Für v(TeO) treten zwei Linien auf: 655 (vs) und 630 (s) cm⁻¹, für δ (TeO) vier Linien bei 395 (ms), 383 (ms), 338 (m) und 312 (m) cm⁻¹. Gitterschwingungen erscheinen bei 188, 170 und 133 cm⁻¹.

Herrn Professor Dr W. Haase, Darmstadt, danke ich für die Überlassung der Kristalle, Herrn Professor Dr K. Dehnicke, Marburg für die Anfertigung der IR- und Raman-Spektren und für seine Mithilfe bei deren Interpretation. Von Herrn Dr O. Willinger wurde die Strukturaufklärung bereits früher in einer orthorhombischen Zelle versucht, aber nicht zu Ende geführt.

Literatur

- ALLMANN, R. (1971). Fortschr. Miner. 48, 24-30.
- ALLMANN, R. (1975). Mh. Chem. 106, 779-793.
- ALLMANN, R. & HAASE, W. (1975). In Vorbereitung.
- BAYER, G. (1968). J. Less-Common Met. 16, 215-222.
- COHEN-ADDAD, C. (1971). Bull. Soc. Fr. Minér. Crist. 94, 172–174.
- DONNAY, G. & ALLMANN, R. (1970). Amer. Min. 55, 1003– 1015.
- GROSS, E. F. (1959). *Hydrogen Bonding*, herausgegeben von D. HADZI, S. 203. New York: Pergamon Press.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- KOLDITZ, L. & FITZ, I. (1967). Z. anorg. allgem. Chem. 349, 184–188.
- LINDQVIST, O. (1970). Acta Chem. Scand. 24, 3178–3188. LINDQVIST, O. & LEHMANN, M. S. (1973). Acta Chem. Scand. 27, 85–95.
- SIEBERT, H. (1959). Z. anorg. allgem. Chem. 301, 161-170.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.